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Abstract
Collisional absorption of dense fully ionized plasmas in strong laser fields
is investigated using quantum kinetic theory as well as molecular dynamics
simulations. Quantum statistical calculations are presented for the important
case of a two-temperature plasma. Comparision is given to molecular dynamics
simulations. Special attention is devoted to the question of how to treat properly
the attractive electron–ion interaction for short ranges in classical molecular
dynamics simulations.

PACS numbers: 52.25.Os, 52.38.−r, 52.65.Yy

1. Introduction

An important question in almost all experiments with interaction of intense laser pulses with
matter is the calculation of the energy deposition and the description of the heating connected
with that. If a solid target is irradiated by such an intense laser pulse, dense plasmas can be
created relevant for astrophysical research and for inertial confinement fusion.

Especially, at high intensities the quiver velocity can be large compared to the thermal
velocity and interesting nonlinear effects have to be expected. One of the important
mechanisms of energy deposition is collisional absorption usually described in terms of the
electron–ion collision frequency [1–4].

2. Collisional absorption in fully ionized plasmas

In the case of strong fields, the dependence of, e.g., the electrical current density on the electric
field has an exponential form and causes thus nonlinear effects such as multi-photon absorption
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Figure 1. Ratio of collision frequencies with HNC structure factor to the respective values with
Sii = 1 as a function of the ion temperature Ti. There are shown curves for different electron
temperatures Te; as a guide for the eye, the circles mark the case of an isothermal plasma where
Te = Ti.

and the occurrence of higher harmonics. For a harmonic electric field, E = E0 cos ωt , the
cycle averaged dissipation of energy is given by [5–7]

〈 j · E〉 = ni

∫
d3q

(2πh̄)3

V 2
ei(q)

Vee(q)
S ii(q, Ti)

∞∑
n=−∞

nω J 2
n

(q · v0

h̄ω

)
Im ε−1

ee (q,−nω, Te), (1)

with εee being the dielectric function of the electron component and Sii the static structure
factor of the ions. The sum over Bessel functions Jn reflects the nonlinear dependence on the
field; v0 = eE0/(meω) is the quiver velocity of free electrons. With equation (1), collisional
absorption can be described for the case of two-temperature plasmas. Also molecular dynamics
(MD) simulations confirm [6] that mainly the electrons are heated by the laser field whereas
the temperature of the ions stays almost constant. The influence of the ion component with
temperature Ti is accounted for in equation (1) by the static ionic structure factor. Results
are shown in figure 1 for an ion structure factor in hypernetted chain (HNC) approximation.
The calculations, given here for v0/vth = 5 (for smaller fields see [6]), show a considerable
influence of structure factor effects on collisional absorption especially for the case Ti < Te.
Only for comparatively low electron temperatures, there is an enhancement of the collision
frequency at all.

3. Molecular dynamics simulations

The energy absorption was also calculated with molecular dynamics simulations [6, 8]. The
external electric field was implemented as a homogeneous linearly polarized harmonic field.
The main difficulty in order to simulate a fully ionized plasma is to model the attractive
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Figure 2. Heating rate of the electrons in a two-temperature hydrogen plasma (Ti = 1000 K) as a
function of the applied field strength. The solid lines denote the analytic results for two different
assumptions for the velocity distribution functions. The circles are MD results for the Deutsch
potential with a thermal wavelength, the squares are results for the Deutsch potential with De
Broglie wavelength with inclusion of quiver motion.

electron–ion interaction: the pure Coulomb potential has a singularity at the origin which
causes a non-physical behaviour of the system. The simplest way to avoid this divergence is
to use a so-called soft Coulomb potential [9] by introduction of some arbitrary cut-off at small
distances. Another possibility is the Kelbg potential [10]

�ij = qiqj

4πε0 r

{
1 − exp

(−r2
/
λ2

ij

)
+

√
πr/λij [1 − erf(r/λij )]

}
, (2)

which was derived from equilibrium quantum statistics using the two-particle Slater sum.
This potential is temperature dependent via the thermal wavelength λij = h̄/

√
2µij kBTij ,

where µij denotes the reduced mass. For the temperature in λei, we used Tei ≈ Te. A quite
similar potential is the frequently used Deutsch potential [11]. In strong electric fields, the
assumption of local thermodynamic equilibrium may not be fulfilled, there are attempts to
use the DeBroglie wavelength including the quiver velocity instead of the thermal wavelength
[8, 12]. The validity of this approach still needs some further discussion.

The temperature can be defined in MD simulations taking into account the undirected
motion only. For the linearly polarized laser field under consideration, there occurs however
an anisotropy. One can define longitudinal (in the field direction) and transversal temperatures
according to

1

2
kBTa‖ = ma

〈
v2

a‖
〉 − 〈va‖〉2

2
, kBTa⊥ = ma

〈
v2

a⊥
〉

2
, (3)

where the angles denote an averaging over all particles of species ‘a’. In addition a mean
temperature of species ‘a’ may be defined as

3
2kBTa = Etherm = 1

2kBTa‖ + kBTa⊥. (4)

The MD calculations were performed using periodic boundary conditions with Ewald
summation. The number of particles was between 2000 and 5000. In contrast to Pfalzner and
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Gibbon who used the so-called constant temperature dynamics [9] in order to determine the
heating rate, we preferred a dynamical method because it simulates the real heating process
instead of using an artificial heat bath. The change of thermal energy is associated with the
electron–ion collision frequency for the high-frequency case via

νei(ω) = ω2

ω2
p

2

ε0E
2
0

〈 j · E〉 = ω2

ω2
p

2ne

ε0E
2
0

dEtherm

dt
. (5)

For details of the calculations, see [6, 8]. Longitudinal and transversal temperatures differ
from each other, details will be presented elsewhere. Usually, the longitudinal temperature
is larger than the transversal one. For high field strengths, however, this relation turns into
the opposite: the width of the velocity distribution function in field direction becomes smaller
than for a Maxwellian [6].

Figure 2 shows the heating of electrons at a mean temperature Te = 5 × 105 K as a
function of the applied field strength. The circles and squares denote the simulation data of
the corresponding two-temperature plasma where the ion temperature was 1000 K. The solid
lines denote results from the analytic approach for a two-temperature plasma with different
assumptions for the velocity-distribution function: we considered Maxwellian as well as super-
Maxwellian distribution functions [13]. The simulation data for the two different potentials
show large deviations from each other for field strengths above 4 × 109 V cm−1. A smaller
effective cut-off radius enhances the probability of large-angle scattering and leads therefore
to stronger electron heating. There is also an influence of the cut-off radius on the distribution
function. Calculations with a soft Coulomb potential with different cut-off radii at fixed
field strength show, however, no systematic trend in the deviation between longitudinal and
transversal temperatures.

To summarize, the choice of the effective electron–ion interaction potential remains a
crucial issue and needs further discussion.
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